Example 1: A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?

Solution:

Let A be the area of rectangular field. Suppose x and y are width and length of rectangle field, then

A = xy ... (i)

Given that the field is of 2400 ft of fencing. So,

$$2x + y = 2400$$

 $y = 2400 - 2x ... (ii)$

Thus (i) can be written as

$$A = xy = x(2400 - 2x)$$
$$= 2400x - 2x^{2}$$

Now,

$$A' = 2400 - 4x$$

For A is maxima, set

$$A' = 0 \Rightarrow 2400 - 4x = 0$$
$$\Rightarrow x = 600$$

Then (ii) gives

$$y = 2400 - 1200 = 1200$$

Also,

$$A'' = -4 < 0$$

This means A is maximum when x = 600 ft and y = 1200 ft.

Thus, length of rectangular field is 1200 ft and width is 600 ft, so that 2400 ft fencing enclosed maximum area.

river